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The Aerodynamics of Mass Lose and Mass Gain of Stars

Francis H. Clauser
The Johns Hopkins University

Foreward

The present paper was written as a result of the discussions at the

Cosmical Gas Dynamics Symposium which took place In Varenna, Italy in

August 1960. Although the writing of the present paper was undertaken by

F. H. Clauser, the paper itself contains many results that were obtained

by Armand Deutsch, Paul Germain, Eugene Parker and other members of

the conference. If it would have been possible to credit these men with

authorship without imposing upon them responsibilities for shortcomings

that may appear in the present paper, this would have been done.

Introduction

A star, being a hot object, tends to boil away its mass into inter-

stellar space. The gravitational field of the star acts to check such a mass

loss. If the boiling is considered as taking place at the surface of the star

and if the atmosphere of the star obeys a polytropic law with any reason-

able exponent, then for almost all stars, the combination of stellar mass,

radius and surface temperature is such that the gravitational field can

effectively hold the atmosphere to the star. This can be perhaps most

readily understood in the following way. The equilibrium equations for an

atmosphere show that for this atmosphere to escape, the thermal velocities

cvihne gas at the surface must exceed some multiple of the escape veiocity

at the surface of the star (the exact value of the multiple depends upon the

polytropic exponent and is not far from unity for "reasonable" exponents).

Since stellar surface temperatures correspond, in most cases, to particle

velocities far less than the escape speed, the truth of the above assertation

is apparent.
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However, we know that in the corona of a star, the atmosphere

does not follow a polytropic law with any "reasonable" exponent. Instead,
S5 6othe temperature rises relatively abruptly to value/of the order 10 K. If

we regard the corona as being an extraordinary region, and suppose that

the atmosphere starts at the outer limits of the cnrona, and obeys a poly-

tropic law outward, then the picture is quite different. With outer coronal

surface temperatures of the order of millions of degrees, the thermal

speeds become comparable with the escape velocities at the outer coronal

surface and the gravitational field is no longer an assured barrier against

the boiling away of the stellar atmosphere.

However, the gravitational field is not the only agent acting to pre-

vent a steady ebullition of ti-te mass of stars. The interstellar reservoir

is not empty, but contains a gas whose pressure, aided by the gravitational

fields of the stars, attempts to force a flow of matter back into the stars.

Because of the great diversity of stars, It is unlikely that a nice

balance of these factors exists for all stars: consequently we should not

expect stellar atmospheres to be in static equilibrium with no inflow or

outflow. Rather we should expect that a flow will be an essential part of

the dynamic equilibrium of stellar atmospheres.

An Illustrative Example of Aerodynamic Flow

Aerodynamic experience shows that even simple flows of compressi-

ble flows, being nonlinear processes, lead to puzzling dilemmas if one

expects, on the basis of experience with linear phenomena, to obtain unique,

continuous solutions to the differential equations describing the flows. To

illustratc this state of affairs, and to lay the groundwork for problems that

will confront us later, let us consider the example shows in figure 1. The

liquid in the lower container is nmaintained at a fixed level and a fixed

temperature. The area of the surface of this liquid is AL* This lower

container is connected by a constricted pipe of throat area, AT , to a

large reservoir in which the pressure p, may be set at any level by means
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of a pump. The area of the pipe at the section which empties into the

* reservoir is A

We are now interested in the whole range of equilibrium flows that

will occur for the various levels of pressure which can be set in the upper

reservoir. Clearly, when the reservoir pressure equals the vapor pressure

of the liquid, no flow will occur. For greater or lesser reservoir pressures

there will be a flow to or from the lower container, with evaporation or

condensation taking place at the liquid surface. What determines the mag-

nitude of these flows and what functional relationship will they bear to the

pressure in the reservoir?

To answer this question without undue complexity, we assume the

flow to be frictionless and to be substantially uniform across each section

of the pipe connecting the lower container to the upper reservoir. We also

assume that the isentropic law for the gas can be represented in the form

p = KP , where p is the pressure, p the density and -,f is the ratio of

the specific heats. The Bernoulli equation for the gas can then be written
2 2

u c
+ B where B is the Bernoulli constant, u is the velocity of the

gas, and c is the local velocity of sound. If A is the local cross-

sectional area of the pipe, then puA = 0 where 0 is a constant repre-

senting the mass flow in the pipe. The velocity of sound is related to the

pressure, density and temperature by the following relations:
2

c = -'RT = p/P

In the above problem, the natural independent variable would appear

to be the distance along the pipe, with the area of the pipe being expressed

in terms of this variable. However, it is an interesting fact that this dis-

tance variable does not enter directly into the equation for the gas flow.

As a consequence, it is appropriate to take the pipe area Itself as the in-

dependent variable. If we express the velocity, the density and the pres -

sure all as functions of this area, we have
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We see that these relationships between u, p, and p on the one

hand and A on the other involve the four constants B, Y , Y, and 0 .

Since our desire is to explore the full range of behavior of such flows,

we see that if we proceed blindly, plotting u, p and p versus A for all

possible values of B, -( , ) and 4 , we are faced with an enormous

amount of work. However, it is possible to avoid this distasteful prospect.

In spite of all the diverse ways in which the constants B, '" , Y, and

enter the above equations, their effect on the behavior of the flow is

relatively simple. They can, in fact, be largely absorbed by changing

the scales used to plot the results. We can simplify the algebra of such

scale changes by introducing the critical velocity, B . ' 3
which is the flow velocity at Mach one, I. e. u = c . Correspondingly we

have

Y - -I
L, ," p y-, •and A

If we now uue these constants as scale factors for the corresponding

variables, we have:

T-, A") LlI
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These equations contain only Y' as a parameter. Furthermore, we find

that for "reasonable" values of Y' the basic character of the curves of

. and, ver-u• L are unchanged by changes
16~. 1 P1curves4\

in ry. These curves have been sketched in figure 2. (The theory of

perfect gases gives the result that I 4 - where 'A is the

number of degrees of freedom of the molecule. For real gaR mixtures,

"reasonable" - 's lie in the range between I and 2. )

All of the curves have the same general shape. They pass through

the point (1, 1) with a vertical tangent at this point. They have two legs

extending to the right, one assy:nptotically approaching the A axis

and the other approaching a horizontal assymptote having an ordinate

greater than unity. Changes in "i- affect only the rate of approach to the

assymptotes and the levels of the upper assymptote.

Note that in figure 2 we have plotted the dependent variables

U. / L, , P / ti, , and ? / ¶. against the independent variable

A /A . In this form, the data are not single valued, but rather for

every value of the area ratio, A/At , there are two possible values for

each of the other variables. This fact will loom importantly in what

follows.

The simplicity that we have achieved in eliminating B, "g, and $

is not without its price. These constants are in reality constants of inte-

gration and we can not determine the basic scales of the problem until we

bave fitted these constants to the appropriate boundary conditions.
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Returning now to figure 1, let us begin our considerations by

supposing that a relatively small flow is passing from the lower container

to the upper reservoir. Since 0 is the magnitude of the flow and since

Ap 2 (/( , LA,) , a small value of 0 relative to u*, p* and the

areas AL , AT and AE of the problem implies that A* is small com-

pared to these areas. Consequently, the ratios, A L /AA, , Ai /A

and At /A9 will be large, and thus will lie well to the right in the

graphs of figure 2. With the proportions we have chosen, they will appear

in much the way we have shown in figure 3.

Now let us increase the amount of the flow, with a corresponding

increase in the scale area, A . The points will move to the left as shown

in figure 4. This increase in flow corresponds, as it should, to a greater

difference in pressure between the stations L and E . But now with the

progression of change from figure 3 to figure 4, we see an interesting

problem looming ahead. As we increase the flow, increasing A* and

moving the three points AT , As and AL toward the vertical tangent

at A/A,4 : I , we see that long before either of the end points, AL

or Aa , experiences difficulty, the throat point, AT , will reach

A/A- and will have no further place to go in its movement to the

left. Now it is not enough to have a proper curve between the end points,

A L and A g The flow goes from A L to A r , but it does so by

going from A L to A T and back to A . And it is of course essential

that a real curve exist at A T .

Our present line of reasoning has led us to a set of flows corre-

sponding to increasing pressure differences, kL - PC , in the

sequence. figure 3 through ficure 4. tn the l1iritiTbi r;ae of figui.re 5. We

also see that the isolated case of figure 6 is possible. In this figure, the

flow takes advantage of the fact that A T is located at the vertical tangent

and crosses to the second branch of the curves for the flow downstream of

the throat. In so doing, it passes from subsonic speeds upstream from the

throat through sonic speed at the throat to supersonic speeds downstream
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from the throat. In this isolated case, the pressure difference has jumped

to a larger value.

We are now confronted with the following dilemma. In practice, we

can set any pressure difference we want between the lower and the upper

chamber. However, we have succeeded only in obtaining solutions for

moderately small pressure differences and for a very special large pressure

difference. What about the solutions for all the other pressure differences?

One can readily verify that we have not overlooked solutions to the equations

with which we started. Furthermore, the equations are right, as far as

they go.

The answer to this dilemma lies in the fact that we have explored

only continuous solutions. As frequently happens with nonlinear phenomena,

the complete picture of behavior can only be obtained by taking into account

discontinuous solutions as well. What happens is this. At the outset, we

knew that the flow phenomena would be affected by viscosity and heat con-

ductivity. A casual estimate showed that for all "normal" circumstances,

their influence would be completely negligible. Since our work would be

prohibitively complicated by including viscosity and heat conductivity,

there was adequate justification for ignoring these factors. However, a

closer examination shows that by Ignoring them, we have reduced the

order of the differential equations for the system and have thereby lost

constants of integration and associated patterns of behavior. When the

viscosity and heat conductivity are extremely small, the complete pattern

of behavior is as follows. There is a backbone set of solutions which are

almost everywhere indistinguishably close to the continuous solutions we

have discussed earlier. In addition, there is a set of smooth but rapid

transitions from supersonic to subsonic flow which have no counterpart in

our earlier continuous solutions. As the viscosity and heat conductivity

become vanishingly small, these abrupt transitions degenerate into dis-

continuous jumps which appear in nature as shock waves. These shock

waves give us the added freedom needed to complete the picture of the



41

flows that accur for various pressure differences between the two containers

of figure 1. In practice we need not consider the details of these "lost"

transition solutions, but we must include shock jumps as part of our flow

pattern if we are to predict the full range of flow behavior.

Let us consider a pressure difference that is a little greater than

that corresponding to figure 5. Using this new degree of freedom afforded

by shock waves, we find that the flow starts at subsonic speeds at AL I

becomes sonic at the throat, A T- and then, after becoming supersonic,

experiences a shock at A which decelerates the flow to subsonic speed
s

again. The flow then continues on, arriving at A 6 at an even lower

speed.

This sequence of events is shown in figure 7. At the shock, the

mass flow, the momentum and the energy of the flow will be conserved.

If subscripts 1 and 2 designate the states just before and just after the

shock, then these conservation laws can be written

LLL

"LA"

Here, we must pay an additional price for the simplicity we gained by

using the scale factors u, . p* , p, and A* in our plotting procedure.

If we insert these factors in the above relations, we find that while u.

is unchanged in crossing the shock, both p* and p, decrease and A*

increases. Thus we nmust always make a change in scales as we cross

the shock.

When pE is only slightly less than that corresponding to figure 5,

the shock wave oi figure 7 will be located very close to the throat. The
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jump across the shock wave will be small and the changes in p., p* and

A* will be correspondingly small. Thus the flow will closely resemble

that of figure 5 except for the small supersonic region and the shock wave

located just downstream from the throat. Consequently, this new class of

flows forms a smooth continuation of the class of flows we found earlier.

As the pressure, P E , i,$ lowered, the shock wave of figure 7

moves downstream and becomes stronger until it stands at the exit station,

E , as shown in figure 8. During this movement of the shock wave from

the throat to the exit station, the entire upstream flow appears to be

frozen in its pattern, I. e. it is completely unaffacted by changes in pa

All that happens is that a greater portion of this flow becomes supersonic.

When this occurs the flow is said to be "choked". The shock wave then

becomes the dominant actor in the changing pattern of the overall flow.

If we consider lower values of pE that of figure 8, we are no

longer able to maintain our assumption that the flow is essentially one-

dimensional, I. e. that it is essentially constant across the flow. For

such values of p L , the entire flow in the pipe appears to be frozen in

its pattern, and the principal action that takes place is the change of the

normal shock wave into diagonal shock waves anchored at the edges of the

exit section as shown in figure 9. As the pressure p g is lowered, thesa

shocks turn downstream and become progressively weaker. When p

reaches the value corresponding to that of figure 6, the shocks stand at the

Mach angle, sin I/L , and have decreased to zero strength. For

still lower values of p E the shocks are replaced by expansion waves.

Thus, the case of figure 6, which was previously an isolated case, now

fits into the progressive scheme of flow pattern chanpes.

We have now succeeded in obtaining a picture of the flow pattern for

the full range of pressure differences that cause fluid to move from the

lower to the upper container of figure 1, and by a simple extension of these

ideas, the corresponding patterns for flows in the other direction can be

obtained.
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In summary, we have found that for small pressure differences, the

flow will be subsonic everywhere, but as the downstream reservoir pressure

is decreased, the flow quantity will increase until sonic velocity occurs at

the throat. At this point, the flow it choked and no further increase in flow

quantity can take place. The subsonic flow upstream from the throat be-

comes fromen. Further decrease in the downstream reservoir pressure

causes supersonic flow to appear downstream from the throat. This super-

sonic flow is terminated by a shock wave and the remaining stretch of flow

to the downstream reservoir is subsonic. The shock first appears at the

throat, and as the downstream pressure is lowered the shock moves down-

stream. It eventually enters the downstream reservoir where it divides

into a diamond pattern of diagonal waves.

The Dynamics of Spherical Flows Having a

Gravitational Field

Now let us attack the problem of the flow into and away from a star.

We shall consider the flow field to be spherically symmetrical. Conse-

quently, for purposes of comparison with our previous work, we may

consider a representative segment of the flow as shown in figure 10. We

begin by noting the points of similarity and difference between the flows of

figures 1 and 10. In the case of the star, the thermonuclear reaction

serves the same role as the heat source in the pipe flow. The mass of the

star is sufficiently great that, for the time scales in which we are interested,

it can play the role of providing an indefinite amount of material to the

"boiling" liquid. The activity in the corona will correspond to the boiling

process and the coronal surface will correspond to the level just above the

surface of the liquid. The interstellar medium, with its pressure, p M

will correspond to the upper reservoir of figure 1 with the corresponding

pressure, p13

Previously, the upper and lower chambers were connected by a pipe

with a minimal area in between; now the two "chambers" are connected by

a "conduit" with continuously increasing area. In addition, we now have
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the star's gravitational field acting upon the flow. Later we shall see that

the effect of this field is not unlike that of a throat in the flow.

Again, we shall investigate the full range of flow patterns for all

possible values of the interstellar medium pressure, pt The equations

P' A= 4,, - ,which we used previously,

remain unchanged. To the Bernoulli equation must be added a gravitational

term, thus: • -

Here, M is the mass of the star, G is the gravitational constant and

A. is the radius of the section under consideration. The addition of the

gravitational term means that the Bernoulli constant, B, can now be nega-

tive. When this is triiue it indicates that the kinetic energy and the thermal

energies are numerically less than the potential energy.

We must make a change in the independent variable of the problem.

Previously we used the area of the cross-section as the independent

variable because the distance along the flow path did not enter the equations

directly. Now, this distance, A , does enter directly (through the gravi-

tational term) and we shall use it as an independent variable. The cross-

sectional area, A , for a sector of one ster-radian, is related to 4o by

the formula: A

As before, we may simplify our problem of examining all solutions

of these equations by incorporating the constants, B , 0 , G , M and

into scale factors. Previously, we succeeded in eliminating all of the

constants of integration and ended up with a single curve for each value

of the thermodynamic parameter, ' . Now, we are not able to eliminate

all of the constants of integration, but end up with a single combined in-

tegration constant which we shall call X .

For convenience, we define our dimensionless variables in the

following way:
1L
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If we eliminate all the other variables except Vj and R and obtain a

single equation relating this velocity variable, W to the radius variable,

we have-:

w Z -# 4(jýU 4-

We notice that we must divide our analysis into two parts; one for use when

B is positive and another for use when B is negative. These correspond

to the two states of positive and negative total energy, with a correspond-

ing sign for each on the right side of the above equation.

Previously, we obtained a single curve for all flows having the

same Y , and all of the different Y curves had essentially the same

shape.

Now, there will be a family of curves for each value of Y/

each member of the family corresponding to one value of X . Furthermore,

the different members of a given family will have essentially different

shapes and the different families will be essentially different in their group-

4ing nf ireP,-a 4, the -,s •s. % miI•,

In practice, we shall be interested in values of 'Y" that range

from Y = 1, which corresponds to a gas which is rendered isothermal

by virtue of great internal energy storage (e. g. high molecular weight),

great heat conductivity, or other similar causes, up to a value of Y' = aw
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$ which corresponds to a gas having no interaction between its particles

(i. e., they are locally free particles). Within this range of */ , the above

equation relating W to "P behaved differently in the subranges

I <-f(< 3/, 3/1<Y< 5/3 and 5/3<- < oo.

Let us first examine the simple case of a non-interacting gas with

" *. In this case, 1- - * 1, and the constant of intergration, X

has been entirely eliminated. This equation has been plotted in figure 11

for both positive and the negative energies. It will be seen that for the

positive energy case, the particles never have values of the velocity para-

meter, \A/ (or kinetic energy parameter) less than unity in the coordinates

we are using. Similarly for the negative energy case, the radius parameter,

"- ,lever exceeds the value unity.

For a gas with interacting particles, let us first consider the case

for which -"I = 2. Such a gas has relatively little internal energy storage.

(It corresponds to a gas having only 2 degrees of freedom, i. e. with perhaps

one of the translation degrees being eliminated by means of a magnetic

field.) This case has been plotted in figure 12 for positive energies and

in figure 13 for negative energies. Instead of having single curves for each

case, we have families of curves for various values of X , which is a

dimensionless parameter giving the amount of flow coming into or going

out from the star. Furthermore the velocity is no longer a single valued

function of the radius, but rather each curve has two values of the velocity

for each radius. If we examine the curves more closely, we find that the

upper branch of each curve corresponds to supersonic flows with the Mach

number, M being greater than one and the lower branch to subsonic flows

with M less than one. The dotted lines of figures 12 and 13 show the loci

of vertical tangents where the transition from subsonic to supersonic flow

takes place. In thIs figure, and in those that follow, the equation for the

locus of vertical tangents (the M = I line) is J " ±

The corresponding equation for the locus of horizontal tangents is
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An interesting physical phenomenon now emerges. Suppose we were

to follow a given positive energy flow in from great radius (the flow itself

can either be going in or out). As we come in, we always reach a limiting

radius where the curve says the flow doubles back on itself. Since this is

physically impossible, it means that for each flow, there is a "choking"

radius beyond which the flow simply cannot go. This choking phenomenon

is in close analogy with the results which we have obtained earlier.

For the negative energy case, an even more interesting situation

arises. The curves of figure 13 have a certain singular point. As a result,

each curve passes through M = 1 twice. Thus, there is both an inner and

an outer choking radius, I. e. a flow starts at sonic speed at one radius and

travels outward at either subsonic or supersonic speeds according to choice,

and again becomes sonic at an outer radius. Beyond these two the flow can

have no real existence.

We notice another point which is common to both positive and nega-

tive energies; namely that for "7 = Z, there is no physical way in which a

transition from subsonic to supersonic flow can take place.

Let us consider flows with somewhat lower values of Y .- As Y-

decreases, the essential character of the curves does not change until a

value of 'r equal to 5/3 is reached. Then, as shown in figures 14 and 15,

the following situation exists. For positive energies, the curves still have

the shape of a bent hairpin for values of K between oo and 3/4- How-

ever, for X = 3/44 , the sharp curve of the hairpin goes off to infinity and

for values of K between o and ./A 4 the curves divide into two sets. each

having a hyperbola-like shape. One set lies close to the vertical axis and

the other lies close to the free particle curve. For these two sets of

curves, no choking occurs; one set is supersonic, the other subsonic; both

exist throughout the full range of radii.
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For the negative energy cases the center singularity has moved off

to VV = co and the curves now have a bent hairpin shape, open at the top.

The choking of the flow occurs only at a limiting outer radius.

As we pass to lower values of ' ; the next major change in the

character of the curves occurs at ^ = 3/2 . Between Y = 5/3 and

"Y" = 3/2 , the curves have the typical shapes shown in figure 16. A

saddle singularity has appeared for the positive energy cases. This saddle

singularity divides the field into 4 parts. In two of the parts, one subsonic

and the other supersonic, the curves have hyperbola-like shapes which

exist for the whole range of R's . The other two parts have bent hairpin

shapes, one being open at the top, the other open to the right. These

curves each have a limiting choking radius, one being an inner radius, the

other an outer radius.

The curves of figure 16 for positive energies show one notable fea-

ture. For the first time, they offer the possibility of real, continuous

transitions between subsonic and supersonic flows. These occur on the

two branches of the saddle singularity. Such flows are quite analogous to

the nozzle flows we encountered earlier. Here, the gravitational field

serves to insert a nozzle in an otherwise monotonically expanding or con-

tracting flow. It is likely that just as in the nozzle case, the flow from

supersonic to subsonic speeds is unstable (shock waves appear). However,

in figure 16, one branch of the saddle corresponds to subsonic to super-

sonic transitions in outward flows and the other to transition in inward

flows.

For the special case of { = 3/2 , the curves have the shapes

shown in flures 17 arid 18. For positive energies, we still have the saddle

singularity, but now the flows all start with finite subsonic velocities at

R = 0 . Some accelerate to supersonic speeds, passing through a limiting

radius and doubling back on themselves. Others slow down, being perma-

nently subsonic. At outer radii, there is a set of permanently supersonic

flows and a set that makes a doubling back transition from subsonic to
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supersonic speeds at an inner limiting radius. Perhaps the most interest-

ing feature of figure 17 is the existence, for X = 1, of a flow having a

constant velocity as it expands outwards. In the process, the temperature

drops, so that even though the flow velocity stays constant, the Mach num-

ber passes from zero to infinity.

For the negative energy case of figure 18, the curves again start at

finite subsonic velocities at R = o. But here they all choke at limiting

outer radii and turn back on themselves to supersonic speeds.

As we go to still lower values of r'C , the next major change in

shape of the curves occurs at -"( = 1. Between < = 3/2 and - =I,

the curves have the typical shapes shown in figure 19. They resemble the

curves of figures 17 and 18 except for the fact that at R = o the curves

start off with zero velocity instead of a finite velocity. The positive energy

curves now give the possibility of starting at small radii with a flow having

low velocities which are subsonic and accelerating this flow to supersonic

velocities at greater radii. These curves also offer the inverse possibility;

namely that of starting at great radii with low velocity subsonic flows and

and accelerating inwards to supersonic speeds. These processes take

place on the two branches of the saddle singularity. The latter possibility

also existed for the flows of figure 16.

At the extreme lower value of 1" = 1, we have the situation shown

in figure 20. At 'Y" = 1, the gas has unlimited internal energy storage

(the number of degrees of internal freedom is co) and this serves to main-

tain the temperature at a constant value. In this limiting case it is

necessary to redefine our dimensionless variables. The equation for the

curves of figure 20 has now become 1 - 10 I0 /,,r. 6

Because of the great internal energy storage, the upper limit of the free

particle flows, which has characterized previous graphs, has now dis-

appeared. Also, since the internal energy is infinite, the distinction be-

tween positive and negative energy cases has disappeared. The saddle
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singularity is still present, offering the possibility of real transitions

from subsonic to supersonic speeds. Now, however, the all-supersonic

flows exhibit a minimum in their velocity curves corresponding to the

maximum in the velocity curves of the all subsonic flows which appeared

earlier. These maxima and minima now all occur at the same dimension-

less radius.

Flows Into and Away From Stars

At this point, let us turn our attention to applying the results of

these curves to the problem of flow into and away from stars. As men-

tioned earlier, we propose to attack this problem in the following way. The

star itself is tending to boil away its atmosphere or corona. Conditions at

the outer edge of the atmosphere or corona will thus impose one set of re-

strictions on the flow field. The interstellar medium, containing gas at a

finite density temperature and pressure, will impose another set of con-

ditions on the flow field,

We can immediately make two far-reaching statements. First---

none of the negative energy flows can correspond to reality for stellar

flow fields. The reason is that none of the negative energy flows have a

finite pressure at R = wo to balance the corresponding pressure of the

interstellar medium. Second--- for positive energy flows, we may not end

up with supersonic flows at R = co . These, too, all have zero pressure

and thus can not balance the pressure of the interstellar medium.

The only circumstanc., that would permit us to use negative energy

cases, would be that all stars had negative energy atmospheres and thus

managed to hold their atmospheres without flow by means of the gravita-

tional hleld. In this case the interstellar medium could be a voiw. However,

as soon as some stars pour forth material into the interstellar medium and

thus give it a finite pressure, we must use positive energy cases for all

stars.

Let us begin our analysis by examining flows that move inwardly

toward the star. We assume that the interstellar medium acts as a
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reservoir capable of supplying an unlimited amount of gas at a fixed pressure

and temperature. We consider a fixed surface surrounding the star and ask

what happens as we vary the "back pressure" at this surface.

If p and c are the pressure and the velocity of sound in the
OD 0,

interstellar medium and if p and Vp are the pressure and escape

velocity at the fixed surface surrounding the star, then the back pressure

corresponding to no flow, in or out, is given by

~NO CMO

If we lower p below this value, there will be an inward flow of

gas. When p reaches the value

the flow will be sonic at the surface. If we now turn to figures 12 to 19,

we readily verify that the dimensionless parameters -W and R are

given by W -

- - "ci . . I V . /L.

Since cCo is about 3/4 km/sec and since Vr for stars is 100's of km/sec,

it is clear that when -. -- A._ , R will be very small compared to unity.

Hence our fixed surface will correspond to values of R very near the origin

of figures 12 to 19.

If we examine figures 12 to 19 carefully we see that only when 'r

if equal to or greater than 1/3 does a real act of aulutions exist from

R = co to very small values of R for/full range of p between psno flow

and p sonic' I. e. between the solution Wd : C and the solution havig

M 1 at /L - /-'L5 • For such values of -y/ , the flow with

Ps= Ps sonic steadily accelerates as it moves inward and, by the time it

has reached /•, , its large gravitational energy has been cunverted into
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comparable proportions of kinetic and thermal energy. Both of these

energies will be large compared to the thermal energy of the interstellar

medium, i. e. WgS will be large.

Now we must determine what happens to flows having _K less

than 5/3 when p varies between p no flow andp8 sonic . In these

cases, there is a value of p relatively close to p 8 no flow' for which

the flow will reach sonic speed at an intermediate R (less than, but not

greatly different from unity) and will subsequently experience a decrease

in Mach number as it proceeds inward to R. . (For I* 's between 3/2

and 5/3 , the velocity will continue to rise even though the Mach number

is falling. ) Thus the flow has choked out in the field beyond the surface

surrounding the star. If we now lower p below this choking value, we

should expect, on the basis of our earlier experience with the flows oi

figure 1, that the flow will make a transition to supersonic speeds (through

the saddle singularity) and then will experience a shock wave jump back to

subsonic speeds before reaching As . The shock wave will steadily

move toward A . as pa is lowered, until it moves past A 5 , provid-

ing a sudden drop in the permissible values of ps 5

Now let us look more closely at conditions near the star itself.

What is happening to the flow after it passes /k S ? At A S , the

combined kinetic and thermal energies of the flow are comparable with the

escape energies of the star, and since stellar surface temperatures usually

correspond to much lower energies, it is clear that major dissipative

energy transfer processes must take place near the star between the in-

coming flow and the star itself. Thus the incoming flow is rapidly cooled

or "condensed". This process will resenmble what is called a condensation

shock. The flow will be rapidly decelerated to low speed, after which, the

incoming gas will simply become a part of the star's atmosphere.

If we add this picture of a condensation shock to our preceding

picture of an incoming flow, we see that the condensation can readily

lower the pressure of p to values appropriate for incoming sonic flow.
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If 1'0 is less than 5/3, it may happen that the condensation is sufficiently

strong so that the regular shock wave in the flow moves inward until it joins

with the condensation shock.

If we were to examine the structure of the condensation shock more

carefully, it is quite possible that we should see a situation not unlike the

corona of the sun, I. e. a very hot gaseous envelope surrounding the star

with a rather rapid transition to the surface temperatures of the star.

In summary, we find that when .( lies between co and 5/3, the

amount of the inflow depends upon conditions existing near the star. If
-( ' , there is no inward flow

-s - PCO [ •-

-- Y

C inwar Ilo

if 5 - (L ) I -Yr 1 7 the inward
"V-i 1 2 TL 2

flow reaches sonic velocity at S and the total mass flux is given by
- 1 6 M• C. 4 2- ,- I

16 P p -- u It is

suggested that condensation near the star determines the pressure level

and if this is so, it is likely that for most stars the condensation is

sufficiently rapid to maintain the flow at this latter value. For flows with

'r between I and 5/3, there will be/relatively narrow band of pressure,

ps just below the value V, 't.j in which

conditions near the star can affect the amount of the flow. For pressures

below this band, the flow will choke at relatively great distances from

the star and then the flow will be "frozen" at the value 2I2-4 L• Z• • - ' I ., . - 2.-_ Y -1
n, s 3 Y ) -- - - --- • <,, •, eO
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O regardless of conditions at the star. Again, the condensation is likely to be

sufficiently strong to cause this choking to take place.

At this point, let us turn our attention to the question of outward

flows from stars. Here we ask the corona to play a more dominant and

active role. We accept the fact the corona is non-isentropic and attempt

to fit our flow patterns to the outer boundaries of the corona, hoping that

beyond some such boundary the flow will be able to be described by poly-

tropic processes.

We attack this problem in the following way. We hold conditions

constant at the outer coronal surface and examine what happens to the flow

as we vary the pressure in the interstellar medium.

When the pressure in the interstellar medium is zero, the gravi-

tational field will prevent any flow from occurring until the energy of the

gas becomes positive. This can be restated in the following way. The

corona will be unable to expel material until it reaches a "boiling" tempera-

ture such that the velocity of sound in the gas, CS at the

outer coronal surface exceeds VE , where V is the escape

velocity at this surface.

Let us assume that this condition is satisfied. We then find that if

the pressure of the interstellar medium has the value

S.- P ,no flow will take•ohO rLQW C2 5 .

place, because the interstellar medium will exert swifficient back pressure

to stop the flow. As we lower p 0 below this value, outward flow will

nermv anti when n reaches the value..

PMCilOKI 1P5 [k'* - yF2 thisa flow

will attain sonic velocity at the outer coronal surface. In order to see

what is happening at intermediate radii, let us refer to the results of
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figures 12 to 20. First we must determine the appropriate scale factors

for the dimensionless variables \A and R . We find that

L C

22

Since we agreed earlier to assume that CS is greater than -y- Ve

we see that both and R will be positive, as they should be. At theouter _ C ;
outer coronal surface, • and - - ---

Now we must distinguish between the different ranges of '( When-

is less than 5/3, a sonic throat can occur in the flow as indicated by the

appearance of a saddle singularity. In figures 16, 17 and 19, this saddle

singularity occurs at P C 4"i) This sonic throat will be

located outside the coronal surface if is less than Vc/; . However

since we must also have -Y" less than 5/3 and C5 greater than

VE for this exterior choking condition to exist, we see that it

can in fact occur only when is less than 3/2. Thus we conclude that

if Y' and • _ . , then, as we lower the
Y2 1 '

pressure. P., below Ps[-. I V J the flow

will reach sonic velocity and choke at some radius exterior to the coronal

surface before it is limited by sonic velocity at the coronal surface.

What happens when the pressure, p., S is lowered below this ex-

terior choking value? There is then no continuous curve linking up conditions

at the coronal surface with conditions in the interstellar medium. Here,

our earlier experience with the configuration of figure 1 comes to our

assistance. We see that the flow emanating from the coronal surface will

pass through soniic velocity at some external radius, and after becoming

supersonic, will experience a shock wave, which will abruptly decelerate

it to subsonic speeds, The flow will then continue out to great radii at
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subsonic speeds. (As long as there is a finite pressure in the interstellar

medium, the flow can not continue outwards at supersonic speeds, because

all supersonic flows end up with zero pressure at R = co. ) The shock wave

will first appear just downstream of the sonic point, and as p 0 is lowered,

the shock wave will progressively move outward. Since it is unlikely that

processes can occur in the gas which will cause -/ to be close to unity

at great distances from the star and since the exterior choking radius can

never be large compared to the coronal radius unless "' is near unity,

we see that when external choking does occur, it will always occur relative-

ly close to the coronal surface.

When "" is greater than 3/2 or when C5 is greater than V/z
then sonic velocity will first occur at the coronal surface and the entire

external flow will be subsonic. Under these circumstances, what occurs

when we lower p even more? We should expect the sonic flow emanating

from the coronal surface to choose the upper limb of the hairpin curve and

accelerate to supersonic speeds. It will then experience a shock wave and

continue outwards at subsonic speeds. The shock wave will first appear

Just outside the coronal surface and will move progressively outwards as

p 0 is lowered.

The above explanation has the following difficulty. We are, in

reality, asking the continuous transition from subsonic to supersonic flow

to take place at the outer limit of the non-isentropic corona. We do so for

cases where such a transition is not possible in isentropic flow. Since we

are closing our eyes to what is happening in the corona, are we not now

asking fluid dynamic as well as thermodynamic magic to occur in the

corona? Strictly, we can not answer this question without attacking the

corona problem itself. However, in so far as coronal processes can be

treated as polytropic processes with fictitious isentropic exponents, we

should expect Y to be near unity (or even below unity). If we accept

this view, then the coronal flow is represented locally by a family of curves

from our figure 20. And from such curveR we can obtain a real transition
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from subsonic to supersonic speeds within the corona. E. H. Parker has,

in fact, used just such an isothermal flow with a transition from subsonic

to supersonic speeds to fit the observed data for the solar corona and has

obtained satisfying agreement.

In summary, we see that for outward flows to take place, it is

necessary that the coronal surface temperature T•s Z be

greater than ( Vg I A / . Furthermore, the pressure in the

interstellar medium must be less than 1j
For lower values of poe # an all-subsonic outward dlow will first

make its appearance. If Y" is less than 3/2 and CS.// lies between

and I , sonic velocity will first appear in the flow at radii

beyond the coronal surface. Otherwise, eame velocity will first appear at

the coronal surface. For still lower values of po I supersonic velocities

will appear beyond the sonic point, followed by a shock wave which converts

the flow back to subsonic speeds. When the sonic velocity occurs at the

coronal surface, the total outward mass flow is simply 4 tpI csI .Z1. When

the sonic velocity occurs beyond the coronal surface, the outward flow is

somewhat less than this amount.

It is interesting to note that in considering both inward and outward

flows we have arrived at quite different criteria for the condition of no

flow. The reason for this is, of course, that in one case we have assumed

the entire field to have the thermodynamic constants of integration appro-

priate to the outer boundary conditions and in the other case appropriate

to the inner boundary conditions. There is no reason why, for Individual

stars, these should agree. It is quite possible that our criteria could

predict the simultaneous possibility of an inward and an outward flow or

the simultaneous impossibility of both. In the latter contingency, it is

always possible to patch together two stationary fields, the inner one con-

sisting of gas from the inner boundary and the outer one of gas from the

outer boundary, to satisfy conditions appropriate for a stable static field.



I , In the former contingency, any such patched field is unstable and one or the

!• other of the gas masses will expel the other and establish its own steady

- • flow.

If the gas In the interstellar medium has emanated from the stars,

then, its thermodynamic constants should agree with some appropriate

average value of the thermodynamic constants of the stars. In this case,

It would not be surprising if a statistical study showed some agreement

between the two criteria.
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